Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Single-mode operation over a wide temperature range in 1.3 μm InGaAsP/InP distributed feedback lasers

Identifieur interne : 01A465 ( Main/Repository ); précédent : 01A464; suivant : 01A466

Single-mode operation over a wide temperature range in 1.3 μm InGaAsP/InP distributed feedback lasers

Auteurs : RBID : Pascal:96-0320820

Descripteurs français

English descriptors

Abstract

An approach for single mode operation of 1.3 μm distributed feedback (DFB) lasers with a large side mode suppression ratio over a wide temperature range of -40°C to 100 °C is reported. The lasers utilize an optimized strained-layer multiquantum well (MQW) active region in combination with index/gain-coupling and detuning effect. A high characteristic temperature To (90-100 K) was obtained in 1.3 μm InGaAsP/InP strained-layer MQW Fabry-Perot lasers when the number of QW's exceeded 10. In gain-coupled DFB lasers, a very low temperature dependence of the threshold current has been obtained when there is no detuning or positive detuning of the lasing wavelength at room temperature with respect to the material gain peak. An infinite To can be realized over certain temperature ranges, in which the threshold current exhibits a minimum, depending on the amount of detuning. The physical mechanism responsible for the appearance of this minimum, as well as the high side mode suppression ratio, are explained theoretically.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:96-0320820

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Single-mode operation over a wide temperature range in 1.3 μm InGaAsP/InP distributed feedback lasers</title>
<author>
<name sortKey="Lu, H" uniqKey="Lu H">H. Lu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LASERTRON</s1>
<s2>Burlington, MA 01803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blaauw, C" uniqKey="Blaauw C">C. Blaauw</name>
</author>
<author>
<name sortKey="Makino, T" uniqKey="Makino T">T. Makino</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">96-0320820</idno>
<date when="1996">1996</date>
<idno type="stanalyst">PASCAL 96-0320820 INIST</idno>
<idno type="RBID">Pascal:96-0320820</idno>
<idno type="wicri:Area/Main/Corpus">01AC28</idno>
<idno type="wicri:Area/Main/Repository">01A465</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0733-8724</idno>
<title level="j" type="abbreviated">J. lightwave technol.</title>
<title level="j" type="main">Journal of lightwave technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compound</term>
<term>Distributed feedback laser</term>
<term>Experimental study</term>
<term>Gallium Arsenides</term>
<term>III-V compound</term>
<term>Indium Phosphides</term>
<term>Multiple quantum well</term>
<term>Quaternary compound</term>
<term>Semiconductor laser</term>
<term>Single mode laser</term>
<term>Strained quantum well</term>
<term>Temperature effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Laser monomode</term>
<term>Laser semiconducteur</term>
<term>Laser réaction répartie</term>
<term>Composé III-V</term>
<term>Indium Phosphure</term>
<term>Composé binaire</term>
<term>Gallium Arséniure</term>
<term>Composé quaternaire</term>
<term>Effet température</term>
<term>Puits quantique multiple</term>
<term>Puits quantique contraint</term>
<term>InP</term>
<term>In P</term>
<term>InGaAsP</term>
<term>As Ga In P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An approach for single mode operation of 1.3 μm distributed feedback (DFB) lasers with a large side mode suppression ratio over a wide temperature range of -40°C to 100 °C is reported. The lasers utilize an optimized strained-layer multiquantum well (MQW) active region in combination with index/gain-coupling and detuning effect. A high characteristic temperature T
<sub>o</sub>
(90-100 K) was obtained in 1.3 μm InGaAsP/InP strained-layer MQW Fabry-Perot lasers when the number of QW's exceeded 10. In gain-coupled DFB lasers, a very low temperature dependence of the threshold current has been obtained when there is no detuning or positive detuning of the lasing wavelength at room temperature with respect to the material gain peak. An infinite T
<sub>o</sub>
can be realized over certain temperature ranges, in which the threshold current exhibits a minimum, depending on the amount of detuning. The physical mechanism responsible for the appearance of this minimum, as well as the high side mode suppression ratio, are explained theoretically.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0733-8724</s0>
</fA01>
<fA02 i1="01">
<s0>JLTEDG</s0>
</fA02>
<fA03 i2="1">
<s0>J. lightwave technol.</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Single-mode operation over a wide temperature range in 1.3 μm InGaAsP/InP distributed feedback lasers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LU (H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BLAAUW (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MAKINO (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>LASERTRON</s1>
<s2>Burlington, MA 01803</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>851-859</s1>
</fA20>
<fA21>
<s1>1996</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20142</s2>
<s5>354000043584620270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 1996 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>96-0320820</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of lightwave technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>An approach for single mode operation of 1.3 μm distributed feedback (DFB) lasers with a large side mode suppression ratio over a wide temperature range of -40°C to 100 °C is reported. The lasers utilize an optimized strained-layer multiquantum well (MQW) active region in combination with index/gain-coupling and detuning effect. A high characteristic temperature T
<sub>o</sub>
(90-100 K) was obtained in 1.3 μm InGaAsP/InP strained-layer MQW Fabry-Perot lasers when the number of QW's exceeded 10. In gain-coupled DFB lasers, a very low temperature dependence of the threshold current has been obtained when there is no detuning or positive detuning of the lasing wavelength at room temperature with respect to the material gain peak. An infinite T
<sub>o</sub>
can be realized over certain temperature ranges, in which the threshold current exhibits a minimum, depending on the amount of detuning. The physical mechanism responsible for the appearance of this minimum, as well as the high side mode suppression ratio, are explained theoretically.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03G02C4</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Experimentelle Untersuchung</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Laser monomode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Single mode laser</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Laser monomodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Semiconductor laser</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Laser semiconductor</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Laser réaction répartie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Distributed feedback laser</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Laser reacción repartida</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio Fosfuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Galio Arseniuro</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Effet température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Temperature effect</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Temperatureinfluss</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Efecto temperatura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>31</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>31</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>31</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Puits quantique contraint</s0>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Strained quantum well</s0>
<s5>32</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Pozo cuántico forzado</s0>
<s5>32</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>InGaAsP</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>As Ga In P</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fN21>
<s1>218</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 01A465 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 01A465 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:96-0320820
   |texte=   Single-mode operation over a wide temperature range in 1.3 μm InGaAsP/InP distributed feedback lasers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024